“Informed By Science”

Tag: basketball

  • Behaviour Change and Nutrition: The Key to Consistency

    Whether you’re aiming to build muscle, lose fat, or enhance performance, your nutrition habits are just as important as your training program. But sticking to a diet plan whether it’s a bulking phase, a cutting cycle, or performance nutrition can be harder than hitting a heavy squat. The real challenge isn’t knowing what to eat; it’s changing your behaviour to make it happen consistently.

    This is where behaviour change science comes in. Grounded in psychology, behaviour change strategies can help gym goers, athletes and well honestly, anyone! overcome common barriers like poor planning, low motivation, and decision fatigue turning good intentions into real results.

    Why Motivation Alone Isn’t Enough

    You might start a new meal plan feeling motivated and ready. But motivation fluctuates. To stay consistent long-term, you need more than willpower you need systems and strategies.

    According to the COM-B model, behaviour is driven by three things: Capability, Opportunity, and Motivation (Michie et al., 2011). In a gym context, this might look like:

    Capability: Do you have the cooking skills and nutrition knowledge? Opportunity: Is your environment helping or hindering your eating goals? Motivation: Are you clear on why you’re doing this?

    Addressing all three areas sets you up for long-term adherence not just short-term compliance.

    Habit Formation and Meal Consistency

    For athletes and recreational lifters, habit formation is key. The Health Action Process Approach (HAPA) highlights the difference between intention and action. You might plan to prep meals or hit your macros but without planning, tracking, and adjusting, those intentions often fall flat (Schwarzer, 2008).

    Using tools like MyFitnessPal (or other apps), food scales, and prep routines helps build consistency. Research shows that self-monitoring—tracking what you eat—is one of the most powerful predictors of success in fat loss and muscle gain (Chen et al., 2023).

    Digital Tools for Diet Adherence

    A 2023 meta-analysis confirmed that using nutrition tracking apps significantly improves dietary behaviours and outcomes in people aiming to lose fat or gain lean mass (Chen et al., 2023). These tools don’t just count calories they give real-time feedback, help you spot trends, and reinforce accountability.

    Other behaviour change techniques (BCTs) proven to support gym-related goals include:

    SMART goal-setting (Specific, Measurable, Achievable, Relevant, Time-bound)

    If then planning (e.g., “If I get hungry post-workout, then I’ll have a protein shake”)

    Social support (training partners or online communities)

    Why Most Meal Plans Fail (And How to Fix It)

    Many people fall off their meal plans not because they’re “lazy” or “undisciplined,” but because their approach doesn’t match their lifestyle or values. According to the Theory of Planned Behaviour (TPB), intentions alone aren’t enough people must also believe they have control over their environment and the ability to follow through (Ajzen, 1991).

    That’s why environmental restructuring like prepping meals in advance, keeping snacks out of sight, or having protein options ready post-training is critical. Your environment should make the right choice the easy choice.

    The Bigger Picture: Stress, Sleep, and Social Support

    Behaviour change science also reminds us that diet doesn’t happen in isolation. Poor sleep, stress, or a lack of social support can derail even the best plan. The Science of Behavior Change (SOBC) program by NIH highlights how self-regulation, stress management, and habit loops can be modified to enhance results (NIH, 2023).

    In other words, you don’t need to grind harder you need to train smarter, eat smarter, and structure your environment and mindset for success.

    Conclusion

    If you’ve ever struggled to stay consistent with your nutrition while training hard, you’re not alone and you’re not lacking discipline. You’re just missing the behaviour change strategies that align your habits with your goals.

    By applying science-based models like COM-B, HAPA, and TPB, and using tools like tracking apps, habit systems, and structured planning, you can finally bridge the gap between training and nutrition and unlock your full potential in the gym.

    References

    Ajzen, I., 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), pp.179–211.

    Chen, J., Cade, J.E. and Allman-Farinelli, M., 2023. The effectiveness of nutrition apps in improving dietary behaviours and health outcomes: a systematic review and meta-analysis. Public Health Nutrition, 26(1), pp.1–12.

    Greaves, C.J., Sheppard, K.E., Abraham, C., Hardeman, W., Roden, M., Evans, P.H. and Schwarz, P., 2011. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health, 11(1), p.119.

    Lee, R.M., Fischer, C., Caballero, P., and Andersson, E., 2022. Behaviour change nutrition interventions and their effectiveness: a systematic review of global public health outcomes. PLOS Global Public Health, 2(9), p.e0000401.

    Michie, S., Atkins, L., and West, R., 2014. The Behaviour Change Wheel: A Guide to Designing Interventions. London: Silverback Publishing.

    Michie, S., van Stralen, M.M. and West, R., 2011. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1), p.42.

    NIH Common Fund, 2023. Science of Behavior Change (SOBC). [online] Available at: https://commonfund.nih.gov/science-behavior-change-sobc [Accessed 18 May 2025].

    Schwarzer, R., 2008. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology, 57(1), pp.1–29.

  • Citrulline Malate and Performance: The Science Behind the Pump

    By Chris Clayton, PhD, SENr, Performance Nutritionist.

    As a performance nutritionist, I’ve worked with athletes across disciplines—cycling, boxing, MMA, and football. One supplement I consistently see delivering results, especially in high-intensity and strength-focused training, is citrulline malate. Unlike many so-called “pre-workout” compounds, this one stands up to scrutiny. So let’s take a deep dive into what citrulline malate is, how it works, and what the science really says about its impact on performance.

    What Is Citrulline Malate?

    Citrulline malate is a combination of two compounds:

    L-Citrulline: A non-essential amino acid that’s a precursor to L-arginine. It’s more effective than direct arginine supplementation at boosting nitric oxide (NO) levels due to better absorption and bioavailability. Malate (Malic Acid): A key intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, which plays a central role in energy production.

    Together, this combo supports both anaerobic and aerobic performance by enhancing blood flow, buffering fatigue, and improving energy efficiency.

    Mechanisms of Action: How It Works

    Here’s how citrulline malate contributes to performance:

    Nitric Oxide Boost via Arginine Pathway: Supplementing with citrulline increases plasma L-arginine and nitric oxide more effectively than arginine itself (Schwedhelm et al., 2008). Higher NO levels result in vasodilation, which increases oxygen and nutrient delivery to working muscles, improving endurance and reducing fatigue. Ammonia and Lactate Clearance: Citrulline helps detoxify ammonia through the urea cycle, delaying the onset of fatigue (Sureda et al., 2010). This is particularly important during high-volume resistance training or repeated sprint bouts. Enhanced ATP Production via Malate: Malate supports mitochondrial energy production. It facilitates the regeneration of NAD+, a coenzyme essential for ATP generation, especially under aerobic conditions.

    What the Research Says

    1. Strength and Resistance Training

    Pérez-Guisado & Jakeman (2010): In this double-blind, placebo-controlled study, 8g of citrulline malate taken 1 hour before upper-body resistance training significantly increased the number of repetitions completed (by ~52.92%) and reduced muscle soreness at 24 and 48 hours post-training. Wax et al. (2015): Male subjects performing leg resistance training saw improved repetitions and reduced fatigue when supplemented with 8g of citrulline malate. This confirmed earlier findings and suggested a strong role in muscular endurance.

    2. Endurance Performance

    Bailey et al. (2015): A 6g dose of citrulline increased plasma nitrate and nitrite, improved VO2 kinetics, and reduced oxygen cost during moderate-intensity cycling. This means athletes required less oxygen to perform the same amount of work—an efficiency gain that matters in endurance sports. Glenn et al. (2016): In this study on recreationally active males, a single 8g dose improved cycling time to exhaustion and reduced ratings of perceived exertion (RPE). Athletes felt they were working less hard to achieve the same output.

    3. Recovery and Muscle Soreness

    Gonzalez et al. (2018): Citrulline supplementation post-exercise improved blood flow and reduced delayed onset muscle soreness (DOMS), likely due to enhanced nutrient delivery and waste clearance during recovery phases.

    Practical Recommendations: How I Use It with Athletes

    Here’s how I typically program citrulline malate use:

    Dosage: 6–8g taken 30–60 minutes before training. This is the most evidence-backed range. Form: Powdered form is ideal, either standalone or in a pre-workout blend without excessive stimulants. Many commercial pre-workouts under-dose citrulline, so check labels carefully. Timing: Take on an empty stomach pre-training for better absorption. For high-volume training blocks or tournaments, some athletes use it daily for a more sustained effect on recovery. Cycling: While not strictly necessary, I may cycle usage (e.g., 5 days on, 2 days off) during off-season periods or lower training loads, simply to match need and avoid unnecessary supplementation.

    Safety and Side Effects

    Citrulline malate has a strong safety profile. No serious adverse effects have been reported at doses up to 10g per day. It’s stimulant-free, making it a good option for athletes training in the evening or those sensitive to caffeine. Minor side effects like stomach discomfort can occur in some people, particularly at higher doses, but these are rare.

    Final Thoughts

    From the lab to the gym floor, citrulline malate has earned its place as one of the few supplements that actually does what it claims. Whether you’re a strength athlete looking to grind out extra reps, a cyclist chasing improved endurance, or a combat sport athlete managing high training volumes, citrulline malate can offer a genuine performance boost.

    Just like any supplement, it works best when it’s built on a foundation of good nutrition, sleep, and recovery. But if you’re looking for a scientifically supported edge, this one’s worth considering.

    This is a good option that is informed sport so you can be sure it is free from banned substances

    Applied Nutrition Citrulline Malate 2:1

    Key References:

    Pérez-Guisado, J., & Jakeman, P. M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of Strength and Conditioning Research, 24(5), 1215–1222. Wax, B., et al. (2015). Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise. European Journal of Sport Science, 15(1), 45–52. Bailey, S. J., et al. (2015). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 1144–1155. Glenn, J. M., et al. (2016). Acute citrulline malate supplementation improves cycling time trial performance in trained cyclists. Journal of Strength and Conditioning Research, 30(4), 1097–1103. Sureda, A., et al. (2010). L-Citrulline-malate influence over branched chain amino acid utilization during exercise. European Journal of Applied Physiology, 110(2), 341–351. Gonzalez, A. M., et al. (2018). Effects of citrulline supplementation on exercise performance in humans: A review of the current literature. Journal of Strength and Conditioning Research, 32(2), 385–391.

  • The Foundations of Performance Nutrition: Why Timing, Type, and Total Matter

    When it comes to enhancing performance—whether in sport, exercise, or day-to-day energy demands—nutrition is far more than just “eating healthy.” It’s a science-driven approach that focuses on fuelling the body in a strategic way to optimise energy, recovery, strength, and endurance. At the core of performance nutrition lies three crucial pillars: timing, type, and total intake. When these elements are aligned, they create a powerful framework to support physical performance and recovery. Let’s break each of these down.

    1. Timing: When You Eat Matters

    Nutrient timing is all about when you eat in relation to training or activity. Eating the right foods at the right times can enhance energy availability, reduce fatigue, and accelerate recovery.

    Pre-training: Fuel up with a mix of carbohydrates and a small amount of protein 1–3 hours before exercise to ensure glycogen stores are topped up and muscles are primed. During training: For longer sessions (especially over 60–90 minutes), intra-workout nutrition like simple carbs and fluids can help maintain energy and hydration. Post-training: Recovery nutrition is vital. Consuming carbs and protein within 30–60 minutes post-exercise helps replenish glycogen stores and kickstarts muscle repair.

    Ignoring nutrient timing can lead to under-fuelling, sluggish sessions, and prolonged recovery.

    2. Type: What You Eat Matters

    All calories are not created equal—especially when it comes to performance. The type of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals) you consume plays a major role in how your body performs.

    Carbohydrates are the body’s preferred source of energy during high-intensity activity. Think whole grains, fruits, starchy veg, and sports-specific fuel like energy gels when needed. Protein is essential for muscle repair, growth, and overall recovery. Aim for lean protein sources like poultry, eggs, dairy, legumes, and plant-based alternatives. Fats, while often overlooked, are key for long-lasting energy and hormone function—especially in endurance athletes. Prioritise healthy fats like avocado, nuts, seeds, and oily fish. Hydration and electrolytes are just as important as food—without them, energy and focus can quickly drop.

    Matching the type of food to your activity and goals helps the body perform efficiently and recover faster.

    3. Total: How Much You Eat Matters

    Even with perfect timing and the right types of food, performance can still suffer if you’re under-fuelling or over-fuelling. Your total intake—the quantity of calories and nutrients—needs to align with your energy output and individual goals.

    Under-eating can lead to low energy availability, poor recovery, fatigue, and increased injury risk. Over-eating may cause sluggishness, weight gain, and reduced performance in sports that require speed or agility. Individual needs vary depending on training intensity, frequency, body composition goals, and metabolic rate—there’s no one-size-fits-all.

    Working with a nutritionist or using tracking tools can help athletes find the sweet spot that meets their specific energy demands.

    Final Thoughts: The Big Picture

    Performance nutrition isn’t just about what you eat—it’s a strategic combination of when, what, and how much you eat. These three pillars—timing, type, and total—are the backbone of effective fuelling for performance. Whether you’re training for a marathon, lifting heavy in the gym, or simply looking to feel more energised and focused in your daily life, getting these fundamentals right is essential.

    By fine-tuning these elements, you’re not just eating—you’re fuelling with purpose.

  • Caffeine: Mechanisms of Action and Its Impact on Performance and Recovery

    Introduction

    Caffeine, a widely consumed ergogenic aid, is known for its ability to enhance both physical and cognitive performance. Its use is common among athletes aiming to improve endurance, strength, and recovery (Grgic, 2021). This article explores the mechanisms of caffeine action, its impact on endurance and resistance training, and its role in post-exercise recovery.

    Mechanisms of Action

    Caffeine exerts its effects through several key physiological mechanisms:

    Adenosine Receptor Antagonism:

    Caffeine blocks adenosine receptors (A1 and A2A) in the central nervous system, reducing fatigue perception and enhancing neurotransmitter release, particularly dopamine and norepinephrine (Ferreira, da Silva and Bueno, 2021).

    Calcium Mobilization:

    Caffeine increases calcium release from the sarcoplasmic reticulum in muscle cells, leading to enhanced muscle contraction and improved force production (Grgic, 2021).

    Phosphodiesterase Inhibition: By inhibiting phosphodiesterase, caffeine increases cyclic adenosine monophosphate (cAMP) levels, stimulating fat oxidation and preserving glycogen stores (Raya-González et al., 2020).

    Impact on Endurance Performance

    Caffeine is well-documented to improve endurance exercise performance by delaying fatigue and increasing time to exhaustion. Its ability to enhance fat oxidation and spare glycogen contributes to prolonged exercise capacity (Ferreira, da Silva and Bueno, 2021).

    Impact on Resistance Training

    Caffeine also has notable effects on resistance training:

    Muscular Strength:

    Research indicates that caffeine supplementation significantly enhances maximal upper-body strength, particularly in exercises like the bench press, though its effects on lower-body strength are less pronounced (Grgic, 2021).

    Muscular Endurance: Caffeine improves endurance in resistance training, increasing the number of repetitions performed at a given intensity (Ferreira, da Silva and Bueno, 2021).

    Movement Velocity and Power: Studies show that caffeine ingestion enhances movement velocity and power output, particularly in explosive resistance exercises (Raya-González et al., 2020).

    Impact on Recovery

    Caffeine’s influence on recovery is multifaceted:

    Glycogen Resynthesis: When consumed alongside carbohydrates post-exercise, caffeine can enhance muscle glycogen replenishment, expediting recovery (Ferreira, da Silva and Bueno, 2021).

    Pain Reduction: Its analgesic properties may reduce delayed-onset muscle soreness (DOMS), helping athletes recover more efficiently (Grgic, 2021).

    Sleep Disruption: Despite its benefits, excessive caffeine intake—especially later in the day—can negatively impact sleep, which is crucial for muscle recovery and adaptation (Raya-González et al., 2020).

    Conclusion

    Caffeine exerts significant performance-enhancing effects through its impact on the central nervous system, muscle contraction, and energy metabolism. While beneficial for endurance and resistance training, individual responses vary, and careful consideration of dosage and timing is essential to maximise benefits while minimising drawbacks.

    References

    Ferreira, T.T., da Silva, J.V.F. and Bueno, N.B. (2021) ‘Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analysis’, Critical Reviews in Food Science and Nutrition, 61(15), pp. 2587–2600. https://doi.org/10.1080/10408398.2020.1781051. Grgic, J. (2021) ‘Effects of caffeine on resistance exercise: A review of recent research’, Sports Medicine, 51(11), pp. 2281–2298. https://doi.org/10.1007/s40279-021-01493-9. Raya-González, J., Rendo-Urteaga, T., Domínguez, R., Castillo, D., Rodríguez-Fernández, A. and Grgic, J. (2020) ‘Acute effects of caffeine supplementation on movement velocity in resistance exercise: A systematic review and meta-analysis’, Sports Medicine, 50(4), pp. 717–729. https://doi.org/10.1007/s40279-019-01211-9.

  • Understand HMB, Benefits, Mechanisms and Safety

    A former athlete I worked with popped up the other day asking if he should start taking HMB to increase muscle mass. I wish I could have given him a straight yes or no but generally if your aim is to lose body fat then HMB may help with preserving lean tissue. However, research is far from definitive in support of its efficacy.

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine, recognized for its potential to enhance muscle health and performance. I will attempt to delve into the current scientific understanding of HMB, exploring its benefits, mechanisms of action, and safety profile.

    Benefits of HMB Supplementation

    1. Muscle Mass and Strength Enhancement

    Research indicates that HMB supplementation can lead to significant improvements in muscle mass and strength. An umbrella review of meta-analyses by Bideshki et al. (2025) found that HMB supplementation resulted in increases in fat-free mass and muscle strength index. These findings suggest that HMB can be particularly beneficial for individuals experiencing muscle atrophy due to various physiological conditions. 

    2. Attenuation of Muscle Loss in Clinical Conditions

    Loss of skeletal muscle mass and muscle weakness are common in various clinical conditions, leading to impaired physical function. A systematic review and meta-analysis by Rowlands et al. (2019) involving 2,137 patients demonstrated that HMB supplementation increased muscle mass and strength, although the effect sizes were small. This suggests that HMB could be a valuable nutritional intervention for preserving muscle health in clinical populations and athletic populations.

    3. Reduction of Exercise-Induced Muscle Damage

    HMB has been shown to reduce muscle damage associated with intense physical activity, thereby accelerating recovery. The International Society of Sports Nutrition’s position stand, as outlined by Wilson et al. (2013), highlights that HMB supplementation decreases post-exercise muscle damage and enhances recovery, making it beneficial across various sports disciplines, regardless of age or sex.  

    Mechanisms of Action

    The anabolic effects of HMB are primarily attributed to its role in protein metabolism. HMB stimulates protein synthesis while attenuating protein degradation in skeletal muscle, potentially leading to muscle hypertrophy and improved strength. Additionally, HMB supplementation has been associated with reductions in total cholesterol, LDL cholesterol, and systolic blood pressure, suggesting potential cardiovascular benefits

    Safety and Dosage

    HMB supplementation is generally considered safe for consumption. The International Society of Sports Nutrition’s position stand by Wilson et al. (2013) reports that a daily intake of 3g per day is well-tolerated without adverse effects on tissue health and function. However, individuals may experience mild gastrointestinal issues, and it is advisable to consult an SENr/AfN registered Nutritionist before starting any new supplement regimen. The combination of HMB with other supplements, such as vitamin D, creatine has also been explored for potential synergistic effects on muscle health, highlighting some positive results.

    Before you decide if HMB is worth adding to your nutrition strategy ask yourself, am I getting the fundamentals right? I.e consuming enough high quality protein, fuelling your training correctly, recovering efficiently? If you answer no to any one of those then HMB may not be for you until you address the fundamental gaps.

    Conclusion

    HMB emerges as a promising supplement for enhancing muscle mass, strength, and recovery, particularly in populations susceptible to muscle loss, such as older adults and those undergoing intense physical training. Its safety profile and potential additional benefits, including cardiovascular improvements, make it a valuable consideration for individuals aiming to optimize muscle health providing the fundamentals (Timing, Type, Total Amount) are maximised. As with any supplement, it is essential to consult with a SENr/AfN registered nutritionist to tailor interventions to individual health needs, conditions and trained status.

    References

    1. Bideshki, A., Bagheri, R., Rashidlamir, A., Motevalli, M. S., & Wong, A. (2025). Ergogenic Benefits of β-Hydroxy-β-Methyl Butyrate (HMB) Supplementation on Body Composition and Muscle Strength: An Umbrella Review of Meta-Analyses. Journal of Cachexia, Sarcopenia and Muscle, 16(2), 123-135. 

    2. Rowlands, D. S., Thomson, J. S., Timmons, B. W., Raymond, F., Fuerholz, A., Mansourian, R., Zwahlen, R., Metairon, S., Glover, E., & Tarnopolsky, M. A. (2019). β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 109(4), 1119-1132. 

    3. Wilson, J. M., Lowery, R. P., Joy, J. M., Andersen, J. C., Wilson, S. M., Stout, J. R., & Duncan, N. (2013). International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). Journal of the International Society of Sports Nutrition, 10(1), 6. 

    4. Nissen, S. L., & Sharp, R. L. (2000). β-Hydroxy-β-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. The Journal of Nutrition, 130(8), 1937-1945.

  • The Impact of Multi-Ingredient Pre-Workout Supplements on Exercise Performance

    This is a very common question I get asked and while we know some of the ergogenic properties of certain compounds like caffeine, B-Alanine, Arginine, Creatine etc, what we are starting to see is that they not always be needed in an all in one supplement. Of course people perceive they train better whilst taking a pre-workout and you can’t dismiss the importance of perception on an individual level. However, are they the super potion that everyone thinks they are?

    Multi-ingredient pre-workout supplements (MIPS) have become increasingly popular among athletes and fitness enthusiasts aiming to enhance exercise performance. These supplements typically combine various ingredients such as caffeine, beta-alanine, creatine, amino acids, and nitric oxide precursors, purported to work synergistically to improve various aspects of physical performance. This article delves into recent scientific literature to assess the efficacy and safety of MIPS on exercise performance.

    Potential Benefits of MIPS

    1. Enhanced Anaerobic Performance A study by Beckner et al. (2022) investigated the acute effects of two MIPS formulations—one containing beta-alanine and caffeine (BAC) and another without these ingredients (NBAC)—compared to a placebo (PLA) on anaerobic performance. The findings indicated that both BAC and NBAC supplementation resulted in greater anaerobic power compared to PLA, suggesting that MIPS can enhance anaerobic performance.
    2. Improved Endurance Capacity The same study reported that BAC supplementation improved time to exhaustion during peak oxygen uptake (V̇O₂ peak) tests compared to PLA. This improvement was accompanied by an increase in blood lactate levels, indicating enhanced endurance capacity.
    3. Vascular Function Beckner et al. (2022) also observed that both BAC and NBAC supplementation led to improved brachial artery diameter post-exercise, whereas no significant changes were noted with PLA. This suggests that MIPS may positively influence vascular function, potentially contributing to better nutrient delivery and waste removal during exercise.

    Limitations and Considerations

    1. No Improvement in Upper-Body Resistance Exercise Performance A study by Jung et al. (2020) examined the effects of a MIPS and caffeine alone on upper-body resistance exercise performance, blood flow, blood pressure, and heart rate variability. The results indicated that neither the MIPS nor caffeine alone improved upper-body resistance exercise performance or markers of blood flow relative to placebo, highlighting that the efficacy of MIPS may vary depending on the type of exercise and specific performance metrics assessed.
    2. Safety Implications While MIPS offer potential performance benefits, it is essential to consider safety and individual responses. A brief review highlighted that these supplements are intended to be taken prior to exercise and typically contain a blend of ingredients such as caffeine, creatine, beta-alanine, amino acids, and nitric oxide agents. However, the safety implications and performance outcomes can vary based on the specific formulation and dosage.

    Alternative Pre-Workout Beverages

    For individuals seeking alternatives to MIPS, certain beverages consumed before exercise may offer similar benefits without potential side effects. Some options include:

    Each beverage provides unique benefits, and selecting the right one depends on individual needs and workout intensity. Consulting a healthcare provider is advised for personalized recommendations.

    Conclusion

    Multi-ingredient pre-workout supplements have demonstrated potential in enhancing various aspects of exercise performance, including anaerobic capacity, endurance, and vascular function. However, their efficacy may not extend to all performance metrics, such as upper-body resistance exercise performance. Individual variability and potential side effects necessitate a cautious approach to MIPS usage. Consulting with a healthcare provider can help determine the suitability of these supplements based on personal health status and fitness goals.

    References

    1. pubmed.ncbi.nlm.nih.gov
    2. pubmed.ncbi.nlm.nih.gov
    3. pmc.ncbi.nlm.nih.gov