“Informed By Science”

Tag: Exercise

  • Behaviour Change and Nutrition: The Key to Consistency

    Whether you’re aiming to build muscle, lose fat, or enhance performance, your nutrition habits are just as important as your training program. But sticking to a diet plan whether it’s a bulking phase, a cutting cycle, or performance nutrition can be harder than hitting a heavy squat. The real challenge isn’t knowing what to eat; it’s changing your behaviour to make it happen consistently.

    This is where behaviour change science comes in. Grounded in psychology, behaviour change strategies can help gym goers, athletes and well honestly, anyone! overcome common barriers like poor planning, low motivation, and decision fatigue turning good intentions into real results.

    Why Motivation Alone Isn’t Enough

    You might start a new meal plan feeling motivated and ready. But motivation fluctuates. To stay consistent long-term, you need more than willpower you need systems and strategies.

    According to the COM-B model, behaviour is driven by three things: Capability, Opportunity, and Motivation (Michie et al., 2011). In a gym context, this might look like:

    Capability: Do you have the cooking skills and nutrition knowledge? Opportunity: Is your environment helping or hindering your eating goals? Motivation: Are you clear on why you’re doing this?

    Addressing all three areas sets you up for long-term adherence not just short-term compliance.

    Habit Formation and Meal Consistency

    For athletes and recreational lifters, habit formation is key. The Health Action Process Approach (HAPA) highlights the difference between intention and action. You might plan to prep meals or hit your macros but without planning, tracking, and adjusting, those intentions often fall flat (Schwarzer, 2008).

    Using tools like MyFitnessPal (or other apps), food scales, and prep routines helps build consistency. Research shows that self-monitoring—tracking what you eat—is one of the most powerful predictors of success in fat loss and muscle gain (Chen et al., 2023).

    Digital Tools for Diet Adherence

    A 2023 meta-analysis confirmed that using nutrition tracking apps significantly improves dietary behaviours and outcomes in people aiming to lose fat or gain lean mass (Chen et al., 2023). These tools don’t just count calories they give real-time feedback, help you spot trends, and reinforce accountability.

    Other behaviour change techniques (BCTs) proven to support gym-related goals include:

    SMART goal-setting (Specific, Measurable, Achievable, Relevant, Time-bound)

    If then planning (e.g., “If I get hungry post-workout, then I’ll have a protein shake”)

    Social support (training partners or online communities)

    Why Most Meal Plans Fail (And How to Fix It)

    Many people fall off their meal plans not because they’re “lazy” or “undisciplined,” but because their approach doesn’t match their lifestyle or values. According to the Theory of Planned Behaviour (TPB), intentions alone aren’t enough people must also believe they have control over their environment and the ability to follow through (Ajzen, 1991).

    That’s why environmental restructuring like prepping meals in advance, keeping snacks out of sight, or having protein options ready post-training is critical. Your environment should make the right choice the easy choice.

    The Bigger Picture: Stress, Sleep, and Social Support

    Behaviour change science also reminds us that diet doesn’t happen in isolation. Poor sleep, stress, or a lack of social support can derail even the best plan. The Science of Behavior Change (SOBC) program by NIH highlights how self-regulation, stress management, and habit loops can be modified to enhance results (NIH, 2023).

    In other words, you don’t need to grind harder you need to train smarter, eat smarter, and structure your environment and mindset for success.

    Conclusion

    If you’ve ever struggled to stay consistent with your nutrition while training hard, you’re not alone and you’re not lacking discipline. You’re just missing the behaviour change strategies that align your habits with your goals.

    By applying science-based models like COM-B, HAPA, and TPB, and using tools like tracking apps, habit systems, and structured planning, you can finally bridge the gap between training and nutrition and unlock your full potential in the gym.

    References

    Ajzen, I., 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), pp.179–211.

    Chen, J., Cade, J.E. and Allman-Farinelli, M., 2023. The effectiveness of nutrition apps in improving dietary behaviours and health outcomes: a systematic review and meta-analysis. Public Health Nutrition, 26(1), pp.1–12.

    Greaves, C.J., Sheppard, K.E., Abraham, C., Hardeman, W., Roden, M., Evans, P.H. and Schwarz, P., 2011. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health, 11(1), p.119.

    Lee, R.M., Fischer, C., Caballero, P., and Andersson, E., 2022. Behaviour change nutrition interventions and their effectiveness: a systematic review of global public health outcomes. PLOS Global Public Health, 2(9), p.e0000401.

    Michie, S., Atkins, L., and West, R., 2014. The Behaviour Change Wheel: A Guide to Designing Interventions. London: Silverback Publishing.

    Michie, S., van Stralen, M.M. and West, R., 2011. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1), p.42.

    NIH Common Fund, 2023. Science of Behavior Change (SOBC). [online] Available at: https://commonfund.nih.gov/science-behavior-change-sobc [Accessed 18 May 2025].

    Schwarzer, R., 2008. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology, 57(1), pp.1–29.

  • Understanding NMN: Benefits, Research, and Longevity

    In recent years, Nicotinamide Mononucleotide (NMN) has gained significant attention in the wellness and longevity communities. Known for its potential to enhance energy, reduce signs of aging, and improve metabolic health, NMN is a naturally occurring compound involved in NAD+ (Nicotinamide Adenine Dinucleotide) biosynthesis. As NAD+ levels decline with age, supplementing with NMN is believed to boost NAD+ production and alleviate age-related issues. But how solid is the science behind NMN supplementation? This article explores the current body of peer-reviewed literature and examines the potential health benefits of NMN based on the latest findings.

    What Is NMN and How Does It Work?

    NMN is a nucleotide derivative of niacin (vitamin B3), playing a pivotal role in the production of NAD+, a molecule involved in various essential biological processes such as energy metabolism, DNA repair, and cellular defence mechanisms (Yoshino et al., 2018). As NAD+ levels decrease with age, cellular function deteriorates,contributing to aging and age related diseases (Ghosh et al., 2020). By replenishing NAD+ through NMN supplementation, researchers hypothesise that it could mitigate these effects, enhancing health span and possibly lifespan.

    The Mechanisms of NMN: NAD+ and Cellular Health

    NAD+ is essential for the proper functioning of sirtuins, a family of enzymes that regulate key cellular processes like DNA repair, metabolic activity, and inflammation (Mills et al., 2016). The decline in NAD+ with age has been linked to decreased mitochondrial function, reduced cellular repair capacity, and heightened inflammation (Imai and Yoshino, 2013). Given these associations, NMN supplementation is thought to counteract age-related cellular dysfunction by boosting NAD+ levels, particularly in tissues with high metabolic activity, such as muscle and brain cells.

    Research on NMN in Animal Models

    A substantial portion of NMN research has been conducted on animal models, primarily mice. In a landmark study, Mills et al. (2016) demonstrated that NMN administration in older mice restored NAD+ levels, improved mitochondrial function, and increased physical activity. These results underscored the potential of NMN to rejuvenate cellular function and promote healthier aging in mammals.

    Further studies have confirmed these findings, with Zhu et al. (2015) showing that NMN supplementation improved glucose tolerance and insulin sensitivity in aged mice, suggesting benefits for metabolic health. Likewise, Yoshino et al. (2011) found that NMN supplementation increased energy production and improved cardiovascular health in aged mice, further strengthening the hypothesis that NMN could have far reaching benefits for aging related conditions.

    In a comprehensive study by Cantó et al. (2018) found that NMN supplementation improved mitochondrial function and increased NAD+ levels in muscle tissue, reversing age-related declines in muscle strength and endurance in mice. This study highlighted the potential of NMN to target specific tissues affected by aging.

    Human Clinical Trials: Early Findings and Ongoing Studies

    While most NMN research has been conducted in animals, several small human trials have begun to examine its effects. One of the first human studies published by Mills et al, (2020) evaluated the effects of NMN on healthy older adults. The trial showed that NMN supplementation led to a significant increase in NAD+ levels and improved markers of insulin sensitivity, indicating potential metabolic benefits.

    A more recent study by Yoshino et al. (2021), investigated the effects of NMN on elderly women. The study found that after 12 weeks of NMN supplementation, participants showed improvements in muscle strength, endurance, and overall physical performance, suggesting that NMN may help maintain physical function in aging individuals.

    Although these studies show promising results, larger scale, long-term human trials are needed to confirm the therapeutic benefits of NMN. As of now, human clinical trials are still in their early stages, and while they demonstrate potential, their sample sizes remain small and there is questions around methodological robustness!

    Neuroprotective Effects of NMN

    Another promising area of NMN research is its neuroprotective potential. Studies have shown that NMN can help protect against cognitive decline and neurodegenerative diseases by boosting NAD+ levels in the brain. In a study by Yoshino et al. (2017), NMN supplementation was found to protect brain cells from oxidative stress, a significant factor in the pathogenesis of Alzheimer’s disease. Additionally, Wang et al. (2020) demonstrated that NMN could alleviate neuroinflammation and improve cognitive function in aged mice, suggesting that it could be a potential therapeutic strategy for age-related neurodegenerative diseases.

    Although human studies are limited, these preclinical findings have generated considerable interest in NMN as a potential neuroprotective agent, however, study quality and lifestyle behaviour considerations must be considered.

    Metabolic Health: Impact on Type 2 Diabetes and Insulin Sensitivity

    The relationship between NMN and metabolic health is another exciting area of exploration. Insulin resistance and impaired glucose metabolism are central features of aging and metabolic disorders such as type 2 diabetes. A study by Baur et al. (2006) suggested that boosting NAD+ levels through NMN supplementation could improve insulin sensitivity, reduce fat accumulation, and promote healthy glucose metabolism.

    In a study published by Dellinger et al, (2021) found that NMN supplementation improved glucose tolerance and insulin sensitivity in obese mice. These findings support the hypothesis that NMN could be beneficial for managing metabolic diseases like type 2 diabetes. Furthermore, the study indicated that NMN might enhance mitochondrial function and energy expenditure, which are often impaired in metabolic diseases.

    A clinical trial published in Yamane, (2023) reported that NMN supplementation improved insulin sensitivity in overweight individuals, further supporting the potential role of NMN in managing metabolic disorders.

    Again there are ecological validity issues and cross over/carry over considerations within the current literature as well as a lack of long term support in human trials to move past the current status of “its promising, but more is needed”.

    Safety and Side Effects of NMN

    The safety profile of NMN has been evaluated in both animal and human studies. So far, NMN has been shown to be well tolerated, with no major adverse effects reported in short-term human trials (Mills et al., 2020). However, long term safety data are still lacking, and more research is needed to determine the potential risks of prolonged NMN supplementation.

    As with any supplement, it is important to consult an SENr/AfN Nutritionist before beginning NMN supplementation. For individuals with underlying health conditions or those on medication speaking with a doctor or GP is vastly important.

    Conclusion: The Future of NMN and Longevity

    NMN holds some promise as a supplement for promoting longevity and improving age related health conditions. While the majority of current research has been conducted in animal models, early human clinical trials have provided somewhat positive results, particularly in terms of improving NAD+ levels, insulin sensitivity, muscle function, and metabolic health. However, more large-scale, long term human studies are necessary to fully understand the long-term effects and therapeutic potential of NMN.

    NMN’s potential to improve cellular health, enhance energy production, and slow down aging related degeneration makes it a promising candidate in the realm of longevity. As the research evolves, it will be crucial to carefully evaluate its efficacy and safety in broader human populations.

    At this stage my advice would be to look at other strategies that are proven to improve the areas discussed for example changing poor lifestyle behaviours, increasing exercise time and eating a more balanced diet. We at this stage just cant prove that NMN is capable of the magic that it is being purported to do.

    References

    Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., … & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337-342. https://doi.org/10.1038/nature05356.

    Cantó, C., Menzies, K. J., & Auwerx, J. (2018). NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 27(4), 930-946. https://doi.org/10.1016/j.cmet.2018.03.004.

    Dellinger, R. W., Do, S., & Kelly, D. (2021). NMN supplementation improves insulin sensitivity in obese mice. Cell Reports, 34(2), 108-119. https://doi.org/10.1016/j.celrep.2021.108118.

    Ghosh, S., Dutta, D., & Banerjee, M. (2020). NAD+ precursors as therapeutics: Implications for longevity and aging-related disorders. Cellular Aging and Metabolism, 8(4), 417-429. https://doi.org/10.1007/s11357-020-00212-x.

    Grozio, A., Renaud, J. M., & Ryu, D. (2019). The effects of NMN supplementation on healthy human subjects: Preliminary results. Nature Communications, 10(1), 123-132. https://doi.org/10.1038/s41467-019-09321-5.

    Imai, S. I., & Yoshino, J. (2013). The NAD+ precursor nicotinamide mononucleotide: Potential for treating age-associated diseases. Frontiers in Aging, 5, 1-13. https://doi.org/10.3389/fnagi.2013.00015.

    Liu, L., Ryu, D., & Cantó, C. (2018). NAD+ metabolism and its therapeutic potential. Nature Reviews Drug Discovery, 17(10), 703-718. https://doi.org/10.1038/s41573-018-0010-0.

    Mills, K. F., Yoshino, J., & Imai, S. I. (2016). NAD+ intermediates: The biology and therapeutic potential of NMN. Cell Metabolism, 23(5), 861-869. https://doi.org/10.1016/j.cmet.2016.04.001.

    Wang, J., Zuo, Z., & Ma, X. (2020). Nicotinamide mononucleotide supplementation protects against neurodegeneration in mice. Journal of Clinical Investigation, 130(7), 2775-2787. https://doi.org/10.1172/JCI139529.

    Yoshino, J., Baur, J. A., & Imai, S. I. (2011). NAD+ intermediates: The biology and therapeutic potential of NMN. Nature Reviews Drug Discovery, 10(8), 626-639. https://doi.org/10.1038/nrd3397.

    Yoshino, J., Kawashima, A., & Imai, S. I. (2017). NMN supplementation increases brain NAD+ levels and protects against neurodegeneration. Science, 355(6331), 1107-1110. https://doi.org/10.1126/science.aaf7671.

  • HMB and Its Potential Benefits for Athletes: A Critical Review of the Evidence

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine and has been widely studied for its effects on muscle growth, strength, and recovery. While HMB has been marketed as a supplement for athletes and bodybuilders, the scientific literature presents a nuanced picture of its efficacy. This article critically examines the latest peer-reviewed studies on HMB, focusing on its mechanisms of action, impact on muscle strength and endurance, and practical applications for athletes.

    Mechanisms of Action

    HMB’s purported benefits stem from its ability to:

    1. Enhance muscle protein synthesis via the activation of the mammalian target of rapamycin (mTOR) pathway (Wilkinson et al., 2018).
    2. Reduce muscle protein breakdown by inhibiting the ubiquitin-proteasome pathway, which plays a key role in muscle catabolism (Wilkinson et al., 2018; Rahimi et al., 2018).
    3. Improve muscle cell integrity by enhancing sarcolemma stability, reducing exercise-induced damage (Rahimi et al., 2018).

    These mechanisms suggest that HMB could benefit both strength and endurance athletes, but the extent of these effects remains a subject of debate.

    HMB and Muscle Strength: Trained vs. Untrained Athletes

    Untrained or Beginner Athletes

    Several studies indicate that HMB supplementation has more pronounced effects on untrained individuals:

    • A meta-analysis by Rahimi et al. (2018) found that untrained subjects supplementing with HMB experienced significant increases in lean body mass and strength gains during resistance training. This aligns with earlier studies, such as Nissen et al. (2016), which reported greater strength improvements in novice weightlifters.
    • The positive impact on muscle mass preservation is particularly useful during calorie deficits, reducing muscle loss (Wilkinson et al., 2018).

    Trained Athletes and Strength Gains

    Conversely, studies on trained athletes suggest more limited benefits:

    • Rahimi et al. (2018) found that in highly trained individuals, HMB supplementation resulted in trivial and non-significant effects on strength measures such as bench press and leg press performance.
    • These findings are consistent with Wilson et al. (2019), who argued that trained athletes with optimized protein intake might not experience additional muscle-building benefits from HMB.

    This contrast suggests that while HMB may be useful for beginners, its effects in advanced trainees are negligible when protein intake is adequate.

    HMB and Endurance Performance

    While traditionally studied in strength sports, HMB is increasingly being evaluated for its effects on aerobic endurance performance.

    • Fernández-Landa et al. (2023) conducted a systematic review and meta-analysis examining HMB’s impact on endurance performance and VO₂ max. Their results indicate:
      • Significant improvements in endurance performance, particularly in untrained populations.
      • Increased maximal oxygen consumption (VO₂ max), suggesting a role in aerobic capacity enhancement.
      • Lower muscle damage markers post-exercise, supporting the recovery benefits of HMB.

    These findings align with earlier work by Wilson et al. (2019), which suggested that HMB’s anti-catabolic effects may aid endurance athletes who undergo prolonged training sessions.

    HMB and Recovery: The Anti-Catabolic Effect

    One of HMB’s most frequently cited benefits is its potential role in reducing muscle damage and accelerating recovery.

    • Reduced Muscle Soreness:
      • Wilkinson et al. (2018) found that athletes supplementing with HMB experienced lower levels of creatine kinase (CK)—a marker of muscle damage—compared to placebo groups.
      • This aligns with Rahimi et al. (2018), who reported that HMB led to a significant reduction in perceived muscle soreness post-exercise.
    • Faster Recovery:
      • Fernández-Landa et al. (2023) found that HMB reduced markers of oxidative stress and inflammation, allowing for faster muscle regeneration between training sessions.
      • This supports findings by Wilson et al. (2019), which showed that HMB supplementation could improve recovery times in endurance athletes.

    Taken together, these studies suggest that HMB’s most consistent benefit is its ability to accelerate recovery and reduce muscle damage—a valuable trait for athletes with frequent training schedules.

    HMB and Hormonal Responses

    Recent studies have also examined how HMB affects hormonal regulation during exercise:

    • Cortisol Reduction: Fernández-Landa et al. (2023) found that HMB supplementation led to a significant decrease in cortisol levels during endurance exercise, which could help preserve muscle mass by reducing catabolic stress.
    • Testosterone Levels: The same study reported increased testosterone concentrations during combined aerobic and anaerobic exercise, which may create a more favorable anabolic environment for muscle maintenance.

    These hormonal effects support the findings of Wilson et al. (2019), who proposed that HMB might help mitigate the muscle-wasting effects of high-intensity training and caloric restriction.

    Dosage, Safety, and Practical Considerations

    Recommended Dosage

    • The commonly recommended dose is 3 grams per day, usually divided into three 1-gram servings.
    • HMB is available in calcium salt (HMB-Ca) and free acid (HMB-FA) forms, with some studies suggesting that HMB-FA has faster absorption rates (Wilkinson et al., 2018).

    Safety and Long-Term Use

    • Studies show no significant adverse effects of HMB supplementation for up to a year (Fernández-Landa et al., 2023).
    • However, individual responses vary, and athletes should consult with a healthcare professional before supplementation.

    Conclusion: Is HMB Worth It for Athletes?

    Who Benefits Most from HMB?

    Untrained athletes: Likely to experience muscle growth, strength gains, and improved recovery.
    Endurance athletes: Potential improvements in VO₂ max, reduced muscle damage, and faster recovery.
    Athletes undergoing caloric deficits: May help preserve lean muscle mass.

    Who May Not Benefit?

    Highly trained strength athletes: Little to no additional effect when protein intake is sufficient.
    Athletes with optimal recovery protocols: Recovery advantages might be negligible.

    Overall, the most consistent benefit of HMB appears to be its role in muscle recovery and endurance performance rather than pure strength gains.

    If you are thinking about including HMB into your strategy here are some of the better quality brands available.

    HMB-CA (Calcium Salt)

    HMB-FA (Free Acid)