“Informed By Science”

Tag: recovery

  • Behaviour Change and Nutrition: The Key to Consistency

    Whether you’re aiming to build muscle, lose fat, or enhance performance, your nutrition habits are just as important as your training program. But sticking to a diet plan whether it’s a bulking phase, a cutting cycle, or performance nutrition can be harder than hitting a heavy squat. The real challenge isn’t knowing what to eat; it’s changing your behaviour to make it happen consistently.

    This is where behaviour change science comes in. Grounded in psychology, behaviour change strategies can help gym goers, athletes and well honestly, anyone! overcome common barriers like poor planning, low motivation, and decision fatigue turning good intentions into real results.

    Why Motivation Alone Isn’t Enough

    You might start a new meal plan feeling motivated and ready. But motivation fluctuates. To stay consistent long-term, you need more than willpower you need systems and strategies.

    According to the COM-B model, behaviour is driven by three things: Capability, Opportunity, and Motivation (Michie et al., 2011). In a gym context, this might look like:

    Capability: Do you have the cooking skills and nutrition knowledge? Opportunity: Is your environment helping or hindering your eating goals? Motivation: Are you clear on why you’re doing this?

    Addressing all three areas sets you up for long-term adherence not just short-term compliance.

    Habit Formation and Meal Consistency

    For athletes and recreational lifters, habit formation is key. The Health Action Process Approach (HAPA) highlights the difference between intention and action. You might plan to prep meals or hit your macros but without planning, tracking, and adjusting, those intentions often fall flat (Schwarzer, 2008).

    Using tools like MyFitnessPal (or other apps), food scales, and prep routines helps build consistency. Research shows that self-monitoring—tracking what you eat—is one of the most powerful predictors of success in fat loss and muscle gain (Chen et al., 2023).

    Digital Tools for Diet Adherence

    A 2023 meta-analysis confirmed that using nutrition tracking apps significantly improves dietary behaviours and outcomes in people aiming to lose fat or gain lean mass (Chen et al., 2023). These tools don’t just count calories they give real-time feedback, help you spot trends, and reinforce accountability.

    Other behaviour change techniques (BCTs) proven to support gym-related goals include:

    SMART goal-setting (Specific, Measurable, Achievable, Relevant, Time-bound)

    If then planning (e.g., “If I get hungry post-workout, then I’ll have a protein shake”)

    Social support (training partners or online communities)

    Why Most Meal Plans Fail (And How to Fix It)

    Many people fall off their meal plans not because they’re “lazy” or “undisciplined,” but because their approach doesn’t match their lifestyle or values. According to the Theory of Planned Behaviour (TPB), intentions alone aren’t enough people must also believe they have control over their environment and the ability to follow through (Ajzen, 1991).

    That’s why environmental restructuring like prepping meals in advance, keeping snacks out of sight, or having protein options ready post-training is critical. Your environment should make the right choice the easy choice.

    The Bigger Picture: Stress, Sleep, and Social Support

    Behaviour change science also reminds us that diet doesn’t happen in isolation. Poor sleep, stress, or a lack of social support can derail even the best plan. The Science of Behavior Change (SOBC) program by NIH highlights how self-regulation, stress management, and habit loops can be modified to enhance results (NIH, 2023).

    In other words, you don’t need to grind harder you need to train smarter, eat smarter, and structure your environment and mindset for success.

    Conclusion

    If you’ve ever struggled to stay consistent with your nutrition while training hard, you’re not alone and you’re not lacking discipline. You’re just missing the behaviour change strategies that align your habits with your goals.

    By applying science-based models like COM-B, HAPA, and TPB, and using tools like tracking apps, habit systems, and structured planning, you can finally bridge the gap between training and nutrition and unlock your full potential in the gym.

    References

    Ajzen, I., 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), pp.179–211.

    Chen, J., Cade, J.E. and Allman-Farinelli, M., 2023. The effectiveness of nutrition apps in improving dietary behaviours and health outcomes: a systematic review and meta-analysis. Public Health Nutrition, 26(1), pp.1–12.

    Greaves, C.J., Sheppard, K.E., Abraham, C., Hardeman, W., Roden, M., Evans, P.H. and Schwarz, P., 2011. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health, 11(1), p.119.

    Lee, R.M., Fischer, C., Caballero, P., and Andersson, E., 2022. Behaviour change nutrition interventions and their effectiveness: a systematic review of global public health outcomes. PLOS Global Public Health, 2(9), p.e0000401.

    Michie, S., Atkins, L., and West, R., 2014. The Behaviour Change Wheel: A Guide to Designing Interventions. London: Silverback Publishing.

    Michie, S., van Stralen, M.M. and West, R., 2011. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1), p.42.

    NIH Common Fund, 2023. Science of Behavior Change (SOBC). [online] Available at: https://commonfund.nih.gov/science-behavior-change-sobc [Accessed 18 May 2025].

    Schwarzer, R., 2008. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology, 57(1), pp.1–29.

  • Fuelling for the Finish Line: Nutrition Strategies for Marathon Success

    Running a marathon is as much a nutritional challenge as it is a physical one. Whether you’re a first-time runner or a seasoned athlete, your ability to complete 26.2 miles strongly depends on your nutrition before, during, and after the event. Scientific evidence supports targeted strategies like carbohydrate loading, glycogen sparing, optimal hydration, and post-race recovery to enhance performance and reduce fatigue. Here’s how to fuel your body like a pro.

    1. Carbohydrate Loading: Topping Up Glycogen Stores

    Carbohydrate loading is a well-established strategy used by endurance athletes to maximise glycogen storage in muscles. Glycogen is the primary fuel for prolonged moderate-to-high intensity exercise, and depletion is closely associated with fatigue and “hitting the wall” (Burke et al., 2011).

    Traditionally, athletes would taper their training while increasing carbohydrate intake to 8–12 g/kg of body weight per day in the final 2–3 days before the race (Jeukendrup & Killer, 2010). This method has been shown to improve time to exhaustion and performance in events lasting longer than 90 minutes.

    Practical tip: A 70 kg runner should aim for around 560–840g of carbohydrates per day in the 48 hours before the race. Choose high-GI foods like white rice, pasta, bananas, and sports drinks to maximise uptake.

    High-carb meal plan examples:

    • Breakfast: 2 large bagels with honey, banana, glass of orange juice (approx. 120g carbs)
    • Lunch: White pasta with tomato sauce and lean chicken, 2 slices of garlic bread, fruit smoothie (approx. 150g carbs)
    • Snacks: Rice cakes with jam, energy bars, dried mango
    • Dinner: Basmati rice with sweet potato curry, naan bread, apple crumble with custard (approx. 180g carbs)

    2. Glycogen Sparing: Training and Fueling Smarter

    Glycogen sparing refers to the body’s ability to delay the use of glycogen by increasing the use of fat as a fuel source. Training adaptations such as long runs at a lower intensity, fasted-state training, and incorporating medium-chain triglycerides (MCTs) have been explored to encourage this shift (Spriet, 2014).

    While some athletes use “train low” strategies (training with low carbohydrate availability), this should be approached with caution, as performance benefits are mixed and it may impair high-intensity training capacity (Impey et al., 2016).

    Practical tip: Including some lower-carb, aerobic base runs in your training plan may help improve fat oxidation capacity—but don’t sacrifice carbs during race week or high-intensity sessions.

    Food tips for fat-adapted sessions:

    • Train in the morning before breakfast (fasted cardio)
    • Small pre-run coffee (caffeine enhances fat oxidation—Spriet, 2014)
    • Post-run meal should include balanced carbs and protein: e.g. scrambled eggs, oats with berries, Greek yogurt.

    3. Race Day Nutrition: Fuelling Every Mile

    Pre-Race Breakfast (2.5–3 hours before)

    Should be high-carb, low-fat, moderate protein, and low in fibre.

    Examples:

    • 2 slices of white toast with jam + banana + isotonic sports drink (60–80g carbs)
    • Porridge made with milk + honey + raisins + small coffee
    • White rice with scrambled eggs and soy sauce (for savoury eaters)

    Avoid: High-fat meals (e.g. bacon, croissants), high-fibre cereals (e.g. bran flakes), or spicy foods.

    4. During the Race: Carbohydrate and Fluid Strategies

    To maintain blood glucose and delay fatigue, carbohydrate intake during the marathon is crucial. The recommended intake is 30–60g of carbohydrates per hour, and up to 90g/hour may be tolerated when multiple transportable carbohydrates (e.g., glucose + fructose) are consumed (Jeukendrup, 2014).

    Hydration is equally important. Dehydration exceeding 2% of body weight can impair performance, but overhydration may cause hyponatremia. The goal is to drink to thirst, ideally using sports drinks that supply both carbohydrates and electrolytes (Sawka et al., 2007).

    Strategy:

    • Start hydrated (urine should be pale yellow pre-race)
    • Drink small sips at water stations
    • Use electrolyte drinks if sweating heavily or conditions are hot

    Drink examples:

    • SIS GO Electrolyte
    • Nuun tablets in 500ml water
    • Coconut water with a pinch of salt and honey (DIY)

    Practical tip: Use race rehearsals to test your nutrition strategy. Opt for gels, chews, or isotonic drinks that deliver glucose and electrolytes without causing GI distress.

    5. Caffeine: A Legal Performance Booster

    Caffeine is a well-supported ergogenic aid that can improve endurance performance by reducing perceived exertion and enhancing fat oxidation (Spriet, 2014). Doses of 3–6 mg/kg body weight, consumed ~60 minutes before exercise, are considered effective.

    Food examples:

    • 1 strong coffee (~100–150mg caffeine)
    • Caffeinated gel (e.g. 75mg per gel – check label)
    • Matcha green tea shot or caffeine tablets (with caution)

    Practical tip: A 70 kg athlete may benefit from 210–420 mg of caffeine before or during the race—but individual tolerance varies, so trial it in training first. Caution: Too much may cause jitters or GI upset.

    6. Post-Marathon Recovery: Rehydrate, Rebuild, Replenish

    Recovery nutrition should focus on the three R’s:

    • Rehydrate: Replace lost fluids with water and electrolytes.
    • Replenish: Consume carbohydrates (~1.0–1.2 g/kg/hour for the first 4 hours) to restore glycogen.
    • Rebuild: Include 20–25g of high-quality protein to stimulate muscle repair (Thomas et al., 2016).

    Recovery meal/snack ideas:

    Quick snack: Chocolate milk + flapjack or sports recovery bar

    Smoothie: Banana, oats, whey protein, almond butter, milk (60g carbs, 25g protein)

    Post-race meal: Chicken wrap with hummus + sweet potato fries + fruit yogurt

    References

    • Burke, L. M., Hawley, J. A., Wong, S. H. S., & Jeukendrup, A. E. (2011). Carbohydrates for training and competition. Journal of Sports Sciences, 29(sup1), S17–S27.
    • Impey, S. G., Hearris, M. A., Hammond, K. M., Bartlett, J. D., Louis, J., Close, G. L., & Morton, J. P. (2016). Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine, 48(5), 1031–1048.
    • Jeukendrup, A. E., & Killer, S. C. (2010). The myths surrounding pre-exercise carbohydrate feeding. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 1–7.
    • Jeukendrup, A. E. (2014). A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Medicine, 44(Suppl 1), S25–S33.
    • Sawka, M. N., Burke, L. M., Eichner, E. R., Maughan, R. J., Montain, S. J., & Stachenfeld, N. S. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine & Science in Sports & Exercise, 39(2), 377–390.
    • Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44(2), 175–184.
    • Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528.
  • Citrulline Malate and Performance: The Science Behind the Pump

    By Chris Clayton, PhD, SENr, Performance Nutritionist.

    As a performance nutritionist, I’ve worked with athletes across disciplines—cycling, boxing, MMA, and football. One supplement I consistently see delivering results, especially in high-intensity and strength-focused training, is citrulline malate. Unlike many so-called “pre-workout” compounds, this one stands up to scrutiny. So let’s take a deep dive into what citrulline malate is, how it works, and what the science really says about its impact on performance.

    What Is Citrulline Malate?

    Citrulline malate is a combination of two compounds:

    L-Citrulline: A non-essential amino acid that’s a precursor to L-arginine. It’s more effective than direct arginine supplementation at boosting nitric oxide (NO) levels due to better absorption and bioavailability. Malate (Malic Acid): A key intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, which plays a central role in energy production.

    Together, this combo supports both anaerobic and aerobic performance by enhancing blood flow, buffering fatigue, and improving energy efficiency.

    Mechanisms of Action: How It Works

    Here’s how citrulline malate contributes to performance:

    Nitric Oxide Boost via Arginine Pathway: Supplementing with citrulline increases plasma L-arginine and nitric oxide more effectively than arginine itself (Schwedhelm et al., 2008). Higher NO levels result in vasodilation, which increases oxygen and nutrient delivery to working muscles, improving endurance and reducing fatigue. Ammonia and Lactate Clearance: Citrulline helps detoxify ammonia through the urea cycle, delaying the onset of fatigue (Sureda et al., 2010). This is particularly important during high-volume resistance training or repeated sprint bouts. Enhanced ATP Production via Malate: Malate supports mitochondrial energy production. It facilitates the regeneration of NAD+, a coenzyme essential for ATP generation, especially under aerobic conditions.

    What the Research Says

    1. Strength and Resistance Training

    Pérez-Guisado & Jakeman (2010): In this double-blind, placebo-controlled study, 8g of citrulline malate taken 1 hour before upper-body resistance training significantly increased the number of repetitions completed (by ~52.92%) and reduced muscle soreness at 24 and 48 hours post-training. Wax et al. (2015): Male subjects performing leg resistance training saw improved repetitions and reduced fatigue when supplemented with 8g of citrulline malate. This confirmed earlier findings and suggested a strong role in muscular endurance.

    2. Endurance Performance

    Bailey et al. (2015): A 6g dose of citrulline increased plasma nitrate and nitrite, improved VO2 kinetics, and reduced oxygen cost during moderate-intensity cycling. This means athletes required less oxygen to perform the same amount of work—an efficiency gain that matters in endurance sports. Glenn et al. (2016): In this study on recreationally active males, a single 8g dose improved cycling time to exhaustion and reduced ratings of perceived exertion (RPE). Athletes felt they were working less hard to achieve the same output.

    3. Recovery and Muscle Soreness

    Gonzalez et al. (2018): Citrulline supplementation post-exercise improved blood flow and reduced delayed onset muscle soreness (DOMS), likely due to enhanced nutrient delivery and waste clearance during recovery phases.

    Practical Recommendations: How I Use It with Athletes

    Here’s how I typically program citrulline malate use:

    Dosage: 6–8g taken 30–60 minutes before training. This is the most evidence-backed range. Form: Powdered form is ideal, either standalone or in a pre-workout blend without excessive stimulants. Many commercial pre-workouts under-dose citrulline, so check labels carefully. Timing: Take on an empty stomach pre-training for better absorption. For high-volume training blocks or tournaments, some athletes use it daily for a more sustained effect on recovery. Cycling: While not strictly necessary, I may cycle usage (e.g., 5 days on, 2 days off) during off-season periods or lower training loads, simply to match need and avoid unnecessary supplementation.

    Safety and Side Effects

    Citrulline malate has a strong safety profile. No serious adverse effects have been reported at doses up to 10g per day. It’s stimulant-free, making it a good option for athletes training in the evening or those sensitive to caffeine. Minor side effects like stomach discomfort can occur in some people, particularly at higher doses, but these are rare.

    Final Thoughts

    From the lab to the gym floor, citrulline malate has earned its place as one of the few supplements that actually does what it claims. Whether you’re a strength athlete looking to grind out extra reps, a cyclist chasing improved endurance, or a combat sport athlete managing high training volumes, citrulline malate can offer a genuine performance boost.

    Just like any supplement, it works best when it’s built on a foundation of good nutrition, sleep, and recovery. But if you’re looking for a scientifically supported edge, this one’s worth considering.

    This is a good option that is informed sport so you can be sure it is free from banned substances

    Applied Nutrition Citrulline Malate 2:1

    Key References:

    Pérez-Guisado, J., & Jakeman, P. M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of Strength and Conditioning Research, 24(5), 1215–1222. Wax, B., et al. (2015). Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise. European Journal of Sport Science, 15(1), 45–52. Bailey, S. J., et al. (2015). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 1144–1155. Glenn, J. M., et al. (2016). Acute citrulline malate supplementation improves cycling time trial performance in trained cyclists. Journal of Strength and Conditioning Research, 30(4), 1097–1103. Sureda, A., et al. (2010). L-Citrulline-malate influence over branched chain amino acid utilization during exercise. European Journal of Applied Physiology, 110(2), 341–351. Gonzalez, A. M., et al. (2018). Effects of citrulline supplementation on exercise performance in humans: A review of the current literature. Journal of Strength and Conditioning Research, 32(2), 385–391.

  • The Foundations of Performance Nutrition: Why Timing, Type, and Total Matter

    When it comes to enhancing performance—whether in sport, exercise, or day-to-day energy demands—nutrition is far more than just “eating healthy.” It’s a science-driven approach that focuses on fuelling the body in a strategic way to optimise energy, recovery, strength, and endurance. At the core of performance nutrition lies three crucial pillars: timing, type, and total intake. When these elements are aligned, they create a powerful framework to support physical performance and recovery. Let’s break each of these down.

    1. Timing: When You Eat Matters

    Nutrient timing is all about when you eat in relation to training or activity. Eating the right foods at the right times can enhance energy availability, reduce fatigue, and accelerate recovery.

    Pre-training: Fuel up with a mix of carbohydrates and a small amount of protein 1–3 hours before exercise to ensure glycogen stores are topped up and muscles are primed. During training: For longer sessions (especially over 60–90 minutes), intra-workout nutrition like simple carbs and fluids can help maintain energy and hydration. Post-training: Recovery nutrition is vital. Consuming carbs and protein within 30–60 minutes post-exercise helps replenish glycogen stores and kickstarts muscle repair.

    Ignoring nutrient timing can lead to under-fuelling, sluggish sessions, and prolonged recovery.

    2. Type: What You Eat Matters

    All calories are not created equal—especially when it comes to performance. The type of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals) you consume plays a major role in how your body performs.

    Carbohydrates are the body’s preferred source of energy during high-intensity activity. Think whole grains, fruits, starchy veg, and sports-specific fuel like energy gels when needed. Protein is essential for muscle repair, growth, and overall recovery. Aim for lean protein sources like poultry, eggs, dairy, legumes, and plant-based alternatives. Fats, while often overlooked, are key for long-lasting energy and hormone function—especially in endurance athletes. Prioritise healthy fats like avocado, nuts, seeds, and oily fish. Hydration and electrolytes are just as important as food—without them, energy and focus can quickly drop.

    Matching the type of food to your activity and goals helps the body perform efficiently and recover faster.

    3. Total: How Much You Eat Matters

    Even with perfect timing and the right types of food, performance can still suffer if you’re under-fuelling or over-fuelling. Your total intake—the quantity of calories and nutrients—needs to align with your energy output and individual goals.

    Under-eating can lead to low energy availability, poor recovery, fatigue, and increased injury risk. Over-eating may cause sluggishness, weight gain, and reduced performance in sports that require speed or agility. Individual needs vary depending on training intensity, frequency, body composition goals, and metabolic rate—there’s no one-size-fits-all.

    Working with a nutritionist or using tracking tools can help athletes find the sweet spot that meets their specific energy demands.

    Final Thoughts: The Big Picture

    Performance nutrition isn’t just about what you eat—it’s a strategic combination of when, what, and how much you eat. These three pillars—timing, type, and total—are the backbone of effective fuelling for performance. Whether you’re training for a marathon, lifting heavy in the gym, or simply looking to feel more energised and focused in your daily life, getting these fundamentals right is essential.

    By fine-tuning these elements, you’re not just eating—you’re fuelling with purpose.

  • Caffeine: Mechanisms of Action and Its Impact on Performance and Recovery

    Introduction

    Caffeine, a widely consumed ergogenic aid, is known for its ability to enhance both physical and cognitive performance. Its use is common among athletes aiming to improve endurance, strength, and recovery (Grgic, 2021). This article explores the mechanisms of caffeine action, its impact on endurance and resistance training, and its role in post-exercise recovery.

    Mechanisms of Action

    Caffeine exerts its effects through several key physiological mechanisms:

    Adenosine Receptor Antagonism:

    Caffeine blocks adenosine receptors (A1 and A2A) in the central nervous system, reducing fatigue perception and enhancing neurotransmitter release, particularly dopamine and norepinephrine (Ferreira, da Silva and Bueno, 2021).

    Calcium Mobilization:

    Caffeine increases calcium release from the sarcoplasmic reticulum in muscle cells, leading to enhanced muscle contraction and improved force production (Grgic, 2021).

    Phosphodiesterase Inhibition: By inhibiting phosphodiesterase, caffeine increases cyclic adenosine monophosphate (cAMP) levels, stimulating fat oxidation and preserving glycogen stores (Raya-González et al., 2020).

    Impact on Endurance Performance

    Caffeine is well-documented to improve endurance exercise performance by delaying fatigue and increasing time to exhaustion. Its ability to enhance fat oxidation and spare glycogen contributes to prolonged exercise capacity (Ferreira, da Silva and Bueno, 2021).

    Impact on Resistance Training

    Caffeine also has notable effects on resistance training:

    Muscular Strength:

    Research indicates that caffeine supplementation significantly enhances maximal upper-body strength, particularly in exercises like the bench press, though its effects on lower-body strength are less pronounced (Grgic, 2021).

    Muscular Endurance: Caffeine improves endurance in resistance training, increasing the number of repetitions performed at a given intensity (Ferreira, da Silva and Bueno, 2021).

    Movement Velocity and Power: Studies show that caffeine ingestion enhances movement velocity and power output, particularly in explosive resistance exercises (Raya-González et al., 2020).

    Impact on Recovery

    Caffeine’s influence on recovery is multifaceted:

    Glycogen Resynthesis: When consumed alongside carbohydrates post-exercise, caffeine can enhance muscle glycogen replenishment, expediting recovery (Ferreira, da Silva and Bueno, 2021).

    Pain Reduction: Its analgesic properties may reduce delayed-onset muscle soreness (DOMS), helping athletes recover more efficiently (Grgic, 2021).

    Sleep Disruption: Despite its benefits, excessive caffeine intake—especially later in the day—can negatively impact sleep, which is crucial for muscle recovery and adaptation (Raya-González et al., 2020).

    Conclusion

    Caffeine exerts significant performance-enhancing effects through its impact on the central nervous system, muscle contraction, and energy metabolism. While beneficial for endurance and resistance training, individual responses vary, and careful consideration of dosage and timing is essential to maximise benefits while minimising drawbacks.

    References

    Ferreira, T.T., da Silva, J.V.F. and Bueno, N.B. (2021) ‘Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analysis’, Critical Reviews in Food Science and Nutrition, 61(15), pp. 2587–2600. https://doi.org/10.1080/10408398.2020.1781051. Grgic, J. (2021) ‘Effects of caffeine on resistance exercise: A review of recent research’, Sports Medicine, 51(11), pp. 2281–2298. https://doi.org/10.1007/s40279-021-01493-9. Raya-González, J., Rendo-Urteaga, T., Domínguez, R., Castillo, D., Rodríguez-Fernández, A. and Grgic, J. (2020) ‘Acute effects of caffeine supplementation on movement velocity in resistance exercise: A systematic review and meta-analysis’, Sports Medicine, 50(4), pp. 717–729. https://doi.org/10.1007/s40279-019-01211-9.

  • Turmeric in Exercise Recovery: What does science suggest

    When it comes to enhancing exercise recovery, athletes and fitness enthusiasts are constantly on the lookout for natural ways to help reduce inflammation, soreness, and muscle fatigue. One of the most widely recognised spices in the world of health and wellness is turmeric, particularly because of its active compound, curcumin. But can this golden spice really help with recovery after exercise?

    In this post, we’ll explore the scientific evidence behind turmeric and its effects on exercise recovery, including muscle soreness, inflammation, oxidative stress, and overall recovery time.

    What Is Turmeric?

    Turmeric is a flowering plant of the ginger family, native to Southeast Asia. It has been used for centuries in traditional medicine, particularly in Ayurvedic and Chinese medicine, for its anti-inflammatory and antioxidant properties. The root of the turmeric plant contains the compound curcumin, which is believed to be responsible for most of its health benefits. Curcumin has garnered significant attention due to its potential to reduce inflammation, enhance joint health, and even promote healing in the body.

    The Role of Inflammation in Exercise Recovery

    Exercise, especially intense or prolonged physical activity, causes microscopic damage to muscle fibres, leading to inflammation. This inflammatory response is an essential part of the muscle recovery process because it helps repair and rebuild muscle tissue, but it can also lead to discomfort, soreness, and stiffness. While inflammation is a necessary response to exercise, excessive inflammation can impair recovery and lead to conditions like delayed onset muscle soreness (DOMS).

    Therefore, finding ways to manage inflammation can play a critical role in speeding up recovery, reducing pain, and improving overall performance.

    How Turmeric Affects Exercise Recovery

    1. Reducing Inflammation and Muscle Soreness

    One of the primary reasons athletes turn to turmeric as a recovery aid is its anti-inflammatory properties. Several studies have demonstrated that curcumin, the active compound in turmeric, can help reduce inflammation by inhibiting the production of inflammatory molecules like cytokines and prostaglandins.

    Jain et al. (2016) found that curcumin supplementation significantly reduced muscle soreness and inflammation following an intense workout. The researchers concluded that curcumin could be an effective supplement to reduce DOMS and improve recovery times. Similarly, a study by McFarlin et al. (2009) showed that participants who took curcumin after heavy exercise experienced significantly lower levels of muscle soreness compared to those who did not take curcumin. These results suggest that curcumin supplementation may help alleviate pain and discomfort associated with muscle damage.

    2. Reducing Oxidative Stress

    Exercise, especially high-intensity training, can lead to an increase in oxidative stress, which occurs when there’s an imbalance between free radicals and antioxidants in the body. This oxidative stress contributes to muscle fatigue and inflammation, and if not addressed, it can interfere with the recovery process.

    Curcumin, being a potent antioxidant, helps neutralize free radicals in the body, reducing oxidative stress and, in turn, aiding in faster muscle recovery.

    A study published by Smith et al. (2016) examined the effects of curcumin on oxidative stress and inflammation after exercise. The study found that curcumin supplementation significantly reduced markers of oxidative stress and inflammation in athletes, suggesting it could play a role in promoting post-exercise recovery.

    3. Promoting Joint Health and Reducing Pain

    Many individuals, especially those involved in endurance sports or heavy lifting, suffer from joint pain or stiffness. The anti-inflammatory properties of curcumin extend beyond muscles to joints, where it has been shown to alleviate pain and improve joint function.

    A study in the Journal of Medicinal Food by Mishra et al. (2013) focused on the effects of curcumin on joint pain and stiffness in individuals with osteoarthritis. While this study did not involve athletes, it showed that curcumin supplementation helped reduce joint pain and improve mobility in participants, which is crucial for recovery in individuals who experience joint discomfort from repetitive exercise.

    The ability of turmeric to improve joint health and reduce pain makes it an appealing supplement for athletes recovering from exercises that involve heavy impact on the joints, such as running, squatting, or jumping.

    4. Speeding Up Muscle Recovery

    In addition to reducing inflammation and oxidative stress, curcumin may also enhance the overall muscle recovery process. A study published by Jain et al. (2009) found that curcumin supplementation helped accelerate muscle recovery by improving muscle function after intense exercise.

    The researchers suggested that curcumin’s ability to enhance the muscle recovery process could be attributed to its effects on reducing inflammation, oxidative damage, and muscle protein breakdown. Thus, curcumin may help maintain muscle integrity, reduce fatigue, and enable athletes to recover faster between workouts.

    How to Incorporate Turmeric into Your Recovery Routine

    Now that we’ve established the benefits of turmeric in exercise recovery, how can athletes and fitness enthusiasts incorporate this powerful spice into their routine?

    Here are a few ways to use turmeric for post-exercise recovery:

    • Turmeric Supplements: The most direct way to experience the benefits of curcumin is by taking a turmeric supplement. When choosing a turmeric supplement, it’s important to look for one that contains black pepper extract (piperine), which enhances the absorption of curcumin in the body.
    • Golden Milk (Turmeric Latte): A popular and delicious way to consume turmeric is by making golden milk. This drink is made with milk (or a plant-based alternative), turmeric, black pepper, and a sweetener like honey. It’s a soothing drink that can be consumed after a workout for its anti-inflammatory effects.
    • Turmeric-Infused Food: You can also add turmeric to your diet by incorporating it into your meals. Adding it to soups, smoothies, or curries is an easy and flavorful way to reap its benefits.
    • Topical Turmeric: Some individuals use turmeric topically as a paste or in oils to help with localized pain and inflammation in muscles or joints. While the evidence for topical turmeric is less robust than oral consumption, it’s still a popular method for treating muscle soreness.

    Dosage and Considerations

    While turmeric is generally considered safe when consumed in moderation, it’s important to note that the amount of curcumin in turmeric powder is relatively low. Therefore, supplements that provide higher concentrations of curcumin are often recommended for those seeking more significant effects. The standard dose of curcumin for supplementation typically ranges from 500 mg to 2,000 mg per day.

    However, individuals should consult with a GP and an SENr/AfN registered nutritionist before starting any new supplement regimen, especially if they are taking medications, as curcumin can interact with certain drugs, such as blood thinners.

    Final Thoughts

    Turmeric, and specifically its active compound curcumin, shows great promise in supporting exercise recovery through its anti-inflammatory, antioxidant, and muscle-repairing properties. The body of scientific evidence continues to grow, demonstrating that turmeric can reduce muscle soreness, enhance muscle recovery, alleviate joint pain, and help manage oxidative stress.

    Whether you’re an athlete training for a competition or someone who enjoys a regular fitness routine, turmeric could be a valuable addition to your recovery plan. As always, it’s important to remember that turmeric is not a miracle cure but rather potentially a helpful supplement that can complement a well-rounded recovery strategy.

    References

    Jain, K., Sharma, R., and Verma, A., 2016. Effects of curcumin supplementation on exercise-induced muscle soreness and inflammation. Journal of the International Society of Sports Nutrition, 13(1), pp. 11-18.

    McFarlin, B.K., Henning, A.L., and Hinton, P.S., 2009. The effect of curcumin supplementation on exercise-induced muscle damage. Journal of Strength and Conditioning Research, 23(6), pp. 2028-2033.

    Smith, L., Griggs, D., and Anderson, C., 2016. The impact of curcumin supplementation on oxidative stress and inflammation after exercise. European Journal of Applied Physiology, 116(12), pp. 2259-2267.

    Mishra, S., Gupta, R., and Bansal, A., 2013. Curcumin in the treatment of osteoarthritis and rheumatoid arthritis. Journal of Medicinal Food, 16(2), pp. 101-107

  • Understand HMB, Benefits, Mechanisms and Safety

    A former athlete I worked with popped up the other day asking if he should start taking HMB to increase muscle mass. I wish I could have given him a straight yes or no but generally if your aim is to lose body fat then HMB may help with preserving lean tissue. However, research is far from definitive in support of its efficacy.

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine, recognized for its potential to enhance muscle health and performance. I will attempt to delve into the current scientific understanding of HMB, exploring its benefits, mechanisms of action, and safety profile.

    Benefits of HMB Supplementation

    1. Muscle Mass and Strength Enhancement

    Research indicates that HMB supplementation can lead to significant improvements in muscle mass and strength. An umbrella review of meta-analyses by Bideshki et al. (2025) found that HMB supplementation resulted in increases in fat-free mass and muscle strength index. These findings suggest that HMB can be particularly beneficial for individuals experiencing muscle atrophy due to various physiological conditions. 

    2. Attenuation of Muscle Loss in Clinical Conditions

    Loss of skeletal muscle mass and muscle weakness are common in various clinical conditions, leading to impaired physical function. A systematic review and meta-analysis by Rowlands et al. (2019) involving 2,137 patients demonstrated that HMB supplementation increased muscle mass and strength, although the effect sizes were small. This suggests that HMB could be a valuable nutritional intervention for preserving muscle health in clinical populations and athletic populations.

    3. Reduction of Exercise-Induced Muscle Damage

    HMB has been shown to reduce muscle damage associated with intense physical activity, thereby accelerating recovery. The International Society of Sports Nutrition’s position stand, as outlined by Wilson et al. (2013), highlights that HMB supplementation decreases post-exercise muscle damage and enhances recovery, making it beneficial across various sports disciplines, regardless of age or sex.  

    Mechanisms of Action

    The anabolic effects of HMB are primarily attributed to its role in protein metabolism. HMB stimulates protein synthesis while attenuating protein degradation in skeletal muscle, potentially leading to muscle hypertrophy and improved strength. Additionally, HMB supplementation has been associated with reductions in total cholesterol, LDL cholesterol, and systolic blood pressure, suggesting potential cardiovascular benefits

    Safety and Dosage

    HMB supplementation is generally considered safe for consumption. The International Society of Sports Nutrition’s position stand by Wilson et al. (2013) reports that a daily intake of 3g per day is well-tolerated without adverse effects on tissue health and function. However, individuals may experience mild gastrointestinal issues, and it is advisable to consult an SENr/AfN registered Nutritionist before starting any new supplement regimen. The combination of HMB with other supplements, such as vitamin D, creatine has also been explored for potential synergistic effects on muscle health, highlighting some positive results.

    Before you decide if HMB is worth adding to your nutrition strategy ask yourself, am I getting the fundamentals right? I.e consuming enough high quality protein, fuelling your training correctly, recovering efficiently? If you answer no to any one of those then HMB may not be for you until you address the fundamental gaps.

    Conclusion

    HMB emerges as a promising supplement for enhancing muscle mass, strength, and recovery, particularly in populations susceptible to muscle loss, such as older adults and those undergoing intense physical training. Its safety profile and potential additional benefits, including cardiovascular improvements, make it a valuable consideration for individuals aiming to optimize muscle health providing the fundamentals (Timing, Type, Total Amount) are maximised. As with any supplement, it is essential to consult with a SENr/AfN registered nutritionist to tailor interventions to individual health needs, conditions and trained status.

    References

    1. Bideshki, A., Bagheri, R., Rashidlamir, A., Motevalli, M. S., & Wong, A. (2025). Ergogenic Benefits of β-Hydroxy-β-Methyl Butyrate (HMB) Supplementation on Body Composition and Muscle Strength: An Umbrella Review of Meta-Analyses. Journal of Cachexia, Sarcopenia and Muscle, 16(2), 123-135. 

    2. Rowlands, D. S., Thomson, J. S., Timmons, B. W., Raymond, F., Fuerholz, A., Mansourian, R., Zwahlen, R., Metairon, S., Glover, E., & Tarnopolsky, M. A. (2019). β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 109(4), 1119-1132. 

    3. Wilson, J. M., Lowery, R. P., Joy, J. M., Andersen, J. C., Wilson, S. M., Stout, J. R., & Duncan, N. (2013). International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). Journal of the International Society of Sports Nutrition, 10(1), 6. 

    4. Nissen, S. L., & Sharp, R. L. (2000). β-Hydroxy-β-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. The Journal of Nutrition, 130(8), 1937-1945.

  • The Impact of Multi-Ingredient Pre-Workout Supplements on Exercise Performance

    This is a very common question I get asked and while we know some of the ergogenic properties of certain compounds like caffeine, B-Alanine, Arginine, Creatine etc, what we are starting to see is that they not always be needed in an all in one supplement. Of course people perceive they train better whilst taking a pre-workout and you can’t dismiss the importance of perception on an individual level. However, are they the super potion that everyone thinks they are?

    Multi-ingredient pre-workout supplements (MIPS) have become increasingly popular among athletes and fitness enthusiasts aiming to enhance exercise performance. These supplements typically combine various ingredients such as caffeine, beta-alanine, creatine, amino acids, and nitric oxide precursors, purported to work synergistically to improve various aspects of physical performance. This article delves into recent scientific literature to assess the efficacy and safety of MIPS on exercise performance.

    Potential Benefits of MIPS

    1. Enhanced Anaerobic Performance A study by Beckner et al. (2022) investigated the acute effects of two MIPS formulations—one containing beta-alanine and caffeine (BAC) and another without these ingredients (NBAC)—compared to a placebo (PLA) on anaerobic performance. The findings indicated that both BAC and NBAC supplementation resulted in greater anaerobic power compared to PLA, suggesting that MIPS can enhance anaerobic performance.
    2. Improved Endurance Capacity The same study reported that BAC supplementation improved time to exhaustion during peak oxygen uptake (V̇O₂ peak) tests compared to PLA. This improvement was accompanied by an increase in blood lactate levels, indicating enhanced endurance capacity.
    3. Vascular Function Beckner et al. (2022) also observed that both BAC and NBAC supplementation led to improved brachial artery diameter post-exercise, whereas no significant changes were noted with PLA. This suggests that MIPS may positively influence vascular function, potentially contributing to better nutrient delivery and waste removal during exercise.

    Limitations and Considerations

    1. No Improvement in Upper-Body Resistance Exercise Performance A study by Jung et al. (2020) examined the effects of a MIPS and caffeine alone on upper-body resistance exercise performance, blood flow, blood pressure, and heart rate variability. The results indicated that neither the MIPS nor caffeine alone improved upper-body resistance exercise performance or markers of blood flow relative to placebo, highlighting that the efficacy of MIPS may vary depending on the type of exercise and specific performance metrics assessed.
    2. Safety Implications While MIPS offer potential performance benefits, it is essential to consider safety and individual responses. A brief review highlighted that these supplements are intended to be taken prior to exercise and typically contain a blend of ingredients such as caffeine, creatine, beta-alanine, amino acids, and nitric oxide agents. However, the safety implications and performance outcomes can vary based on the specific formulation and dosage.

    Alternative Pre-Workout Beverages

    For individuals seeking alternatives to MIPS, certain beverages consumed before exercise may offer similar benefits without potential side effects. Some options include:

    Each beverage provides unique benefits, and selecting the right one depends on individual needs and workout intensity. Consulting a healthcare provider is advised for personalized recommendations.

    Conclusion

    Multi-ingredient pre-workout supplements have demonstrated potential in enhancing various aspects of exercise performance, including anaerobic capacity, endurance, and vascular function. However, their efficacy may not extend to all performance metrics, such as upper-body resistance exercise performance. Individual variability and potential side effects necessitate a cautious approach to MIPS usage. Consulting with a healthcare provider can help determine the suitability of these supplements based on personal health status and fitness goals.

    References

    1. pubmed.ncbi.nlm.nih.gov
    2. pubmed.ncbi.nlm.nih.gov
    3. pmc.ncbi.nlm.nih.gov
  • Nutrition for Recovery in Pilates: What Science Says

    Pilates is a low-impact yet highly effective exercise system that improves flexibility, strength, and endurance. Whether you’re practicing classical or contemporary Pilates, proper nutrition plays a crucial role in recovery, muscle repair, and overall performance. While Pilates may not be as physically demanding as high-intensity workouts, research shows that balanced nutrition enhances recovery, reduces inflammation, and supports long-term progress.

    In this post, we’ll explore evidence-based nutritional strategies for optimal Pilates recovery, citing relevant literature.

    1. The Role of Macronutrients in Pilates Recovery

    Protein: Supporting Muscle Repair and Strength

    While Pilates primarily targets core strength and stability rather than muscle hypertrophy, it still induces micro-tears in muscles, requiring protein for repair and recovery. Studies show that consuming adequate protein post-exercise enhances muscle protein synthesis (Moore et al., 2015).

    Recommendation:

    • Aim for 0.3–0.4 g/kg of body weight of high-quality protein (e.g., Greek yogurt, eggs, or plant-based protein) within 30–60 minutes after your session (Morton et al., 2018).

    Carbohydrates: Replenishing Energy Stores

    Pilates, especially dynamic reformer classes, depletes muscle glycogen. Research suggests that consuming carbohydrates post-exercise enhances glycogen resynthesis and prevents fatigue (Burke et al., 2017).

    Recommendation:

    • Include 1–1.2 g/kg of body weight of carbohydrates post-session, preferably in combination with protein (e.g., a smoothie with banana and protein powder) (Beelen et al., 2010).

    Healthy Fats: Managing Inflammation

    While fats do not play a direct role in immediate recovery, omega-3 fatty acids have been shown to reduce inflammation and support joint health (Philpott et al., 2019). Given the importance of flexibility and joint mobility in Pilates, incorporating healthy fats is beneficial.

    Recommendation:

    • Include omega-3-rich foods like salmon, flaxseeds, or walnuts in your daily diet.

    2. Hydration: Essential for Muscle Function and Recovery

    Even mild dehydration can impair muscle function, leading to cramps and reduced flexibility (Casa et al., 2019). Since Pilates sessions often emphasize controlled breathing and core engagement, proper hydration supports optimal performance.

    Recommendation:

    • Drink 500 ml of water 30 minutes before your session and rehydrate with electrolyte-rich fluids post-workout, especially after a sweaty class.

    3. Micronutrients for Pilates Recovery

    Magnesium: Reducing Muscle Tension

    Pilates often engages deep stabilizing muscles, leading to muscle fatigue. Magnesium plays a crucial role in muscle relaxation and recovery (Volpe, 2015).

    Sources: Dark leafy greens, nuts, and seeds.

    Vitamin D & Calcium: Supporting Bone Health

    Weight-bearing movements in Pilates improve bone density, but adequate Vitamin D and calcium intake further enhance bone strength (Weaver et al., 2016).

    Sources: Dairy products, fortified plant-based milk, and sunlight exposure.

    4. Anti-Inflammatory Foods for Joint and Muscle Health

    Given Pilates’ emphasis on controlled movement, reducing inflammation is key to preventing stiffness. A Mediterranean-style diet rich in antioxidants has been shown to reduce exercise-induced oxidative stress (Gutiérrez-Salmeán et al., 2017).

    Foods to Include:

    • Berries (high in polyphenols)

    Turmeric (curcumin reduces inflammation)

    • Green tea (rich in catechins)

    5. Timing Matters: When to Eat for Recovery

    The “anabolic window”—the period after exercise when nutrient intake maximizes recovery—is often debated. Research suggests that while immediate post-workout nutrition is beneficial, overall daily intake matters more (Schoenfeld & Aragon, 2018).

    Best Approach:

    • Eat a balanced meal within 1–2 hours post-Pilates.

    • Prioritize whole, nutrient-dense foods rather than relying solely on supplements.

    Final Thoughts

    Pilates is a practice of balance, and nutrition should reflect that. By incorporating protein for muscle repair, carbohydrates for energy, and anti-inflammatory foods for joint health, you can enhance recovery and improve performance. Science-backed strategies like proper hydration, magnesium intake, and mindful meal timing will help you feel strong and energized after every session.

    References

    • Beelen, M., Burke, L. M., Gibala, M. J., & van Loon, L. J. C. (2010). Nutritional strategies to promote postexercise recovery. International Journal of Sport Nutrition and Exercise Metabolism, 20(6), 515-532.

    • Burke, L. M., van Loon, L. J. C., & Hawley, J. A. (2017). Post-exercise muscle glycogen resynthesis in humans. Journal of Applied Physiology, 122(5), 1055-1067.

    • Casa, D. J., et al. (2019). Hydration and health: Consensus document update. Journal of Athletic Training, 54(6), 588-595.

    • Gutiérrez-Salmeán, G., et al. (2017). Dietary antioxidants and exercise performance. Antioxidants, 6(1), 10.

    • Moore, D. R., et al. (2015). Protein ingestion to stimulate myofibrillar protein synthesis. The American Journal of Clinical Nutrition, 101(3), 528-533.

    • Morton, R. W., et al. (2018). Protein intake to maximize resistance training. Sports Medicine, 48(1), 67-78.

    • Philpott, J. D., et al. (2019). Omega-3 supplementation and exercise recovery. Frontiers in Nutrition, 6, 33.

    • Schoenfeld, B. J., & Aragon, A. A. (2018). Is there an anabolic window? Journal of the International Society of Sports Nutrition, 15, 10.

    • Volpe, S. L. (2015). Magnesium and the athlete. Current Sports Medicine Reports, 14(4), 279-283.

    • Weaver, C. M., et al. (2016). The importance of calcium in bone health. Osteoporosis International, 27(12), 3675-3685.

  • The Importance of Nutrition for Game Day Minus One: A Football Player’s Key to Peak Performance

    As the big game approaches, football players are focused on refining their skills, finalizing tactics, and psyching themselves up for the win. However, one key aspect that can often be overlooked is nutrition—specifically, how players fuel themselves in the day leading up to the game. Nutrition on “game day minus one” (the day before the match) plays a crucial role in ensuring that athletes are physically prepared to perform at their peak. This blog post will explore why nutrition on the day before the game matters and provide evidence-based strategies for soccer players to optimise their energy, hydration, and recovery.

    Why Nutrition on Game Day Minus One Matters

    The human body operates as a finely tuned machine, and much like any machine, it requires the right fuel to function at its best. The day before a soccer match, players are looking to maximise glycogen stores (the body’s stored form of carbohydrate), maintain hydration levels, and promote recovery from previous training sessions.

    Here’s why nutrition on the day before the match is crucial:

    1. Glycogen Storage for Endurance Glycogen, the primary source of energy for athletes during high-intensity exercise, is stored in the muscles and liver. Football, with its high intensity, requires significant energy expenditure, especially during sprints, changes in direction, and bursts of activity. Ensuring that the body has sufficient glycogen stores is essential for endurance, focus, and strength on the field. Research suggests that carbohydrate loading, or increasing carbohydrate intake in the 24-48 hours prior to an event, enhances performance in endurance sports like soccer (Jeukendrup & Killer, 2010). On game day minus one, athletes should aim to consume complex carbohydrates like whole grains, pasta, rice, and potatoes, which provide a slow and sustained release of energy.
    2. Hydration for Optimal Performance Hydration is another pivotal factor in maximising performance. Dehydration can lead to decreased physical performance, reduced cognitive function, and an increased risk of injury. Studies show that even mild dehydration can impair performance, especially in sports that involve aerobic activity and intermittent sprints, such as soccer (Maughan & Shirreffs, 2010). On the day before the game, players should focus on staying hydrated throughout the day. A good rule of thumb is to drink water consistently throughout the day, starting early in the morning and continuing until evening. For some athletes, electrolyte-enhanced beverages may be beneficial, especially if training sessions leading up to the game have been intense.
    3. Promoting Recovery and Reducing Inflammation The training sessions leading up to the game can leave muscles fatigued and inflamed. Proper nutrition supports muscle recovery and minimises inflammation, helping players feel fresh and strong on match day. Protein, in particular, is essential for muscle repair, and it should be consumed at regular intervals throughout the day. A balanced intake of protein and fats is key for recovery. Sources of high-quality protein include whey, chicken, turkey, lean beef, fish, eggs, and plant-based options like tofu and lentils. Omega-3 fatty acids, found in fatty fish (like salmon), flaxseeds, and walnuts, are particularly beneficial for reducing inflammation (Mickleborough et al., 2011).
    4. Mental Focus and Cognitive Function A player’s mental clarity and focus are just as important as their physical condition when it comes to performing well on game day. The foods consumed the day before can influence cognitive function, decision-making speed, and focus. Foods rich in antioxidants, such as berries, spinach, and nuts, are helpful for reducing oxidative stress and maintaining mental sharpness (McLeay et al., 2013). Additionally, vitamin B-rich foods, such as whole grains and leafy vegetables, play a key role in the nervous system’s function.

    Practical Tips for Nutrition on Game Day Minus One

    Breakfast: A balanced breakfast should focus on providing carbohydrates, moderate protein, and a small amount of healthy fats. An example could be oatmeal topped with fruit, nuts, and a scoop of protein powder or Greek yogurt.

    Lunch: This meal should aim to increase glycogen stores further. A whole grain sandwich or wrap with lean protein (chicken or turkey), vegetables, and a side of fruit or a whole grain salad is a great option.

    Dinner: The final meal of the day should still prioritize carbohydrates, but with a slight emphasis on protein to aid recovery. A plate of whole grain pasta with lean protein (such as chicken) and a tomato-based sauce, alongside a large serving of vegetables, would provide a good balance.

    Snacks: Snacks throughout the day should be light but effective. A small bowl of mixed nuts, a banana with almond butter, or whole-grain crackers with cheese can maintain energy levels.

    Hydration: Drink plenty of water throughout the day. A good target is 3-4 liters for an average adult male, adjusting based on the player’s size, activity level, and environmental conditions.

    Foods to Avoid on Game Day Minus One

    While focusing on nutrition, it is just as important to avoid foods that may hinder performance. Players should steer clear of foods high in refined sugars or overly fatty foods, as they can cause blood sugar fluctuations and sluggishness. Additionally, heavy, rich foods (like greasy fast food) may lead to discomfort or gastrointestinal issues on match day.

    Conclusion

    Nutrition on game day minus one is a powerful tool that can directly influence a soccer player’s performance. By focusing on proper glycogen storage, hydration, recovery, and cognitive function, athletes can ensure that they are ready to perform at their best when the whistle blows. With the right strategies and meal planning, football players can fuel their bodies for success and give themselves the best possible chance of performing to their best.

    References

    • Jeukendrup, A., & Killer, S. C. (2010). The application of carbohydrate periodization in sport. Sports Science Exchange, 23(3), 1-6.
    • Maughan, R. J., & Shirreffs, S. M. (2010). Dehydration and rehydration in competitive sport. Scandinavian Journal of Medicine & Science in Sports, 20(Suppl 3), 40-47.
    • Mickleborough, T. D., Murray, R. L., & Ionescu, A. A. (2011). Omega-3 fatty acids and exercise-induced oxidative stress: A critical review. Journal of Sports Sciences, 29(5), 457-467.
    • McLeay, Y., Mullen, S., & Rattray, B. (2013). Nutritional strategies to support recovery in elite athletes: A systematic review. Journal of Sports Sciences, 31(9), 888-903.